Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films.

نویسندگان

  • Andy Ying-Guey Fuh
  • Chia-Rong Lee
  • Ya-Hui Ho
چکیده

We focus on the fabrication and study of controllable holographic gratings based on azo-dye-doped and undoped polymer-ball-type polymer-dispersed liquid-crystal films. Experimental results indicate that the next step of photopolymerization of the sample with the illumination of Ar+ laser beams after UV curing causes a latent density grating to be recorded. This grating is formed by a selective secondary photopolymerization. Heating and applying a voltage change the structure of the liquid crystal and induce the appearance of the latent grating. Diffraction efficiencies versus temperature, voltage, and state of polarization are studied for both dye-doped and undoped cells and are found to be quite different. This discrepancy is attributable to the reorientation effect of liquid crystals through their interaction with the photo-induced adsorption of the doped dyes on the surface of polymer balls in the dye-doped cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer

Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...

متن کامل

Structured Polymer/Liquid Crystal for Switchable Diffractive and Micro Optics

Polymer dispersed liquid crystals are generally described as a system with an isotropic liquid crystal (LC) droplet distribution in a polymer matrix. Using masked ultraviolet light and/or applied electric field a structured polymer/LC phase separation can be achieved. One technological advantage is the potential for integrated polymer/LC devices. This approach can be used to manufacture miniatu...

متن کامل

A new polymeric - liquid crystAlline composite templAte for opticAl, electro-opticAl And All-opticAl ApplicAtions cesAre pAolo umeton

1 The POLICRYPS structure In the last decades, great attention has been devoted to the realization of switchable holographic structures in liquid crystalline composite materials [1]. In particular, it has been shown that diffraction gratings based on Holographic Polymer Dispersed Liquid Crystals (HPDLC), that means droplets of Nematic Liquid Crystal (NLC) dispersed in a polymer matrix (see inse...

متن کامل

Holographically formed, acoustically switchable gratings based on polymer-dispersed liquid crystals.

We report holographic polymer-dispersed liquid crystal (H-PDLC) gratings driven by surface acoustic waves (SAWs). Our experiments show that upon applying SAWs, the H-PDLC grating exhibited switchable properties: The diffraction of the H-PDLC grating decreased, whereas the transmission increased. This acoustically switchable behavior is due to the acoustic streaming-induced realignment of liquid...

متن کامل

Diffraction properties of highly birefringent liquid-crystal composite gratings.

We have fabricated electrically switchable holographic gratings, using Polaroid Corporation's DMP-128 photopolymer filled with the nematic liquid crystal E7. It is shown that a coupled-wave theory that includes the effects of the birefringence of the liquid crystal must be used to explain the diffraction properties of these anisotropic volume gratings. Furthermore, a detailed comparison of theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 41 22  شماره 

صفحات  -

تاریخ انتشار 2002